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Abstract—The steady-state crack growth in an elastic solid which contains particles that undergo
irreversible dilatant transformation is analyzed. The transformation is assumed to be uniform and
to be triggered when the mean stress attains a critical value. The transformed zone size and the
toughening are obtained for the full range of a transformation intensity parameter.

INTRODUCTION

Tt is well established experimentally (Evans and Heuer, 1980 ; Evans and Cannon, 1986)
that ceramics containing particles that undergo martensitic-type transformation experience
fracture toughness increase. Toughening may be measured by the ratio K/K,,, of the far-
ficld to the crack tip stress intensity factors. The conditions for the initiation of the trans-
formation are not fully established, but onc that has received the most attention is that
dilatational transformation occurs when the mean stress reaches some critical value.
(Another condition which is mathematically less tractable but may be more realistic is that
the transformation occurs when a critical value of the maximum shear stress is attained.)

There have been a number of theoretical studics (e.g. see McMecking and Evans (1982))
bused on the mean stress criterion. Detailed results for the toughening in steady-state crack
growth have been calculated (Budiansky et af., 1983) over a wide range of values of an
intensity-of-transformation parameter @ to be defined later. In a related study Rose (1986)
showed that, for the case of so-called supercritically transforming particles, a crack in the
composite can “lock up”, with K/Kj;, = 0 at a finite value of . In this paper we provide
results for the toughening and transformation zone size for the full range of values of the
intensity parameter o up to lock-up.

SOME BASIC RELATIONSHIPS

Consider a semi-infinite crack in an clastic solid which contains particles that undergo
an irreversible, stress-induced dilatant transformation 0). The particles are assumed to
transform supercritically when the mean stress o, attains some critical value af,. That is, if
¢ is the volume fraction of the particles the dilatant transformation strain 07 = ¢f)] occurs
discontinuously in the composite when

Om = {0k = Oy (1)

As the crack advances under steady-state conditions, transformation occurs along a curve
C ahcad of the crack tip (sce Fig. 1), and in the wake region A4 behind C no further
transformation occurs. The growth of the crack is assumed to occur at a constant critical
value of the crack-tip stress intensity factor K, under a constant applied far-field stress
intensity factor K. The stress ficld remote from the crack tip is given by
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Fig. . Trunsformed zone in steady-state crack growth.
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where 2 = v, +ix, = R e denotes a material point, and the stress field in the neighborhood

of the crack tip has the similar form

Kup
h R—-0. 3
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Let -y = R, ¢, ¢, > 0 denote the center of a circular spot of material of arca dd
that undergocs dilatant transformation 0. Undcer plane strain conditions, the mean stress
a,, at = resulting from a pair of such spots located at z, and Z,. the conjugate of . 1s
(Hutchinson, 1974)
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where Re denotes the real part. The stress intensity factor induced by the pair of spots s
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and so the tip stress intensity factor due to the tar-ficld, eqn (2), plus the changes imposed
by the transformation in A (Fig. 1) is

Eo' L
[\’up =K+ J‘J R, ‘e Cos (_{), dA. (5)
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APPROXIMATE TOUGHENING FORMULA

If the effects of the transformation on the location of the front boundary C of the
transformation zone are neglected, i.e. only the far-field stresses, eqn (2), are taken into
account in the transformation criterion (1), the shape of Cis given by

8 . |
R~ ) H cos’ P 0<h<a (6)

.\/,

where H is the half-height of the wake, given by

3 )2 3\
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Evaluation of the integral in eqn (5). with C prescribed by eqn (6), gives
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Fig. 2. Dependence of cruck-tip stress intensity on intensity of transformation.

i . Eol' H 172
AHP = K- 2(1 ~V) (zr_\/}) * (8)

Substitution of estimate (7) tor H provides the approximate equation given by Budiansky
eial

o J3
KKz 1= 0 o )

where

1 +v Ect}
o= B (10

l—v o),

This is plotted as the dotted line in Fig. 2. But a much better approximation can be found
by exploiting the path-independent Z-integral for steady-state cracking (Budiansky ef al.,
1983) which, for supereritical transformation, provides the exaet relation

K (1=vY)  K3,(1=vY) o
U Tt T oHe 0T
P P +2Ho, {n

It may be anticipated that K, depends strongly on # but less so on the detailed shape of
C. Accordingly, climinating # between egns (8) and (11) gives

plotted as the dushed curve in Fig. 2. This compares well with numerical results which were
found only up to w = 20 by Budiansky ef al.. as shown by the solid curve, but does not
provide a refiable result for lock-up, when K,,,/K = 0. We will describe next our numerical
solution for the rest of the solid curve, up to and including lock-up.

NUMERICAL SOLUTION

The steady-state problem requires that eqn (1) be satisfied as the boundary of the
transformation zone is approached {rom the outside. The mean stress at any poiant outside
the transformed zone consists of the sum of the contributions from eqns (2) and (4), the
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Fig. 3. Dependence of size of transformation zone on intensity of transformation.

latter being integrated over the entire transformed zone 4 (Fig. 1). Integration with respect
to the horizontal coordinate, with use of the substitution

r= v()n-,<ﬂ".‘>~k R}
2 +v)" \ K

shows that the shape r($) of boundary C satisfics the integral equation (Budiansky ¢f al..
1983)

Do
;/l-; cos (¢/2) + é‘:L Fp.P)dé =1, 0<¢ <, (14)
where
. - - d .
F(.d) = i[g(b, ) +9(. —(p)]&/;(; sin @)

J(FIr) cos (b +d)/2] +cos ¢

Gib.h) = = F P2 cos (b~ §)/2]

Here the polar angle ¢, to the top of C must satisfy (¢/0d)(r sin ¢p) = 0 at ¢,,. The solution
of the integral equation, eqn (14), for r($) and ¢, was obtained by writing

r(p) sin b = S a, sin (1= 1/2Dap'bal. 0 < b < p. (15)
1

We substituted series (135) into the integral cquation, multiplicd the equation by
sin [(m—=1/2)yrp/py) for m=1,.... N and integrated with respeet to ¢ from 0 to ¢, to
obtiain N cquations for the N+ | unknowns «a,,...,ay and ¢,,. The (N + 1)th equation was
obtained by sctting ¢ = ¢, in eqn (14). The N+ | non-lincar equations were then solved
by the Newton -Raphson iteration method. (The solution scheme used here is different from
that used by Budiansky er al)) The crack tip intensity K, is then computed from the
equation

i 3 2 {* 1 $\ d .
Anp = [\[] - 657: X ;’/"" COos (j) d;/) (I' sin (l)) d(bjl (|6)

that follows from eqn (6), again via integration over A in the horizontal direction. The
numerical results for K,,,/K are exhibited for the full range of values of the intensity-of-
transformation parameter w in Fig. 2. Further, with the wake half-height given by
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H = R(¢y) sin ¢, (17

the resulting values of H/[(1 +v)K,,/0%]" are shown in Fig. 3.

The value of the transformation intensity at which lock-up occurs. that is, for which
K., K = 0. was obtained by setting the coefficient of Kin eqn (16) equal to zero and treating
@ as an additional unknown. This provided N+2 equations for the V+2 unknowns
ay.....ay. ¢n and , also solved by the Newton-Raphson method. The result for the
critical lock-up parameter is w = w, = 29.99, which agrees with the value obtained by Rose
(1986).

The value of the angle ¢, at the top of the transformation zone boundary C was found
to vary from ¢, = 60" at w = 0 to ¢, =~ 97" at lock-up. in agreement with Rose. All of the
results for K,/ K were obtained to better than three-figure accuracy with V = 2.
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